
FP-AMG: FPGA-Based Acceleration Framework

for Algebraic Multigrid Solvers

Pouya Haghi∗, Tong Geng∗, Anqi Guo∗, Tianqi Wang†, Martin Herbordt∗

∗Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
†Department of Physics, University of Science and Technology of China, Hefei, China

Email: ∗{haghi, tgeng, anqiguo}@bu.edu, †tqwang@mail.ustc.edu.cn, ∗herbordt@bu.edu

Abstract—Partial Differential Equations (PDEs) are fundamen-
tal to many real-world scientific computing applications and so
their optimization has undergone decades of study. Algebraic
multigrid (AMG) is one of the most well-known solvers, being
widely adopted in High Performance Computing (HPC) due
to its good scalability. Acceleration of AMG is known to be
very challenging, due to the following reasons: (1) irregular
computation patterns, (2) random memory access, and (3) a
large number of kernels with various computation types. To the
best of our knowledge, there is no prior work on FPGA-based
acceleration of AMG.

To tackle these challenges, we propose an efficient FPGA-
based reconfigurable framework, called FP-AMG, for high-
performance AMG calculation. In order to obtain full pipeline
utilization, we propose a novel and scalable architecture that
can be reused for all kernels in AMG. Given that AMG is
strictly memory-bound, we propose algorithmic and architectural
optimizations to ensure nearly ideal use of memory bandwidth.
The efficiency of FP-AMG is evaluated with six well-known
benchmarks on two FPGA devices: one with and one with-
out high bandwidth memory (HBM). The experimental results
are compared with a highly optimized Intel Xeon E5-2680-
V4 implementation of the state-of-the-art HYPRE library. Our
experiments show that FP-AMG can achieve average speedups of
2.5× and 6.6×, for FPGAs without and with HBM, respectively.

I. INTRODUCTION

Computer simulation is the core of HPC and is playing

an increasingly important role in scientific research and in-

dustrial development. A large fraction, if not the majority,

of computer simulations require solving PDEs; in the most

widespread applications, these involve solving large systems

of sparse linear equations. The demand for shorter run time

while achieving a high accuracy is paramount in solving these

large linear systems. Although traditional (geometric) multi-

grid solvers provide linear (O(N)) computational complexity,

solving highly unstructured problems (e.g. computational fluid

dynamics) with geometric multigrid is very complex or even

impossible [1]. The advent of Algebraic Multigrid (AMG) [2]–

[4] has made solving systems of equations with unstructured

grids possible, though still challenging, while maintaining the

same asymptotic complexity as geometric multigrid.

Researchers have spent much effort on parallelizing and

optimizing AMG for CPU clusters [5]–[7] and accelerating

it with GPUs [8]. In both cases, however, it is difficult to

achieve desired speedups because of architectural limitations.

For CPUs a single node does not provide sufficient paral-

lelism; therefore large-scale CPU clusters are generally used.

But while clusters supply sufficient FLOPs, communication

becomes the bottleneck and severely limits scalability [9],

[10]. For GPUs, the irregular data accesses and complex data

dependencies of AMG algorithms lead to poor cache locality,

and therefore low utilization, again limiting performance with

even a single GPU [11]. In contrast, FPGAs’ attributes of

(1) customizable datapaths and, (2) flexible memory and

computing subsystems, have enabled efficient acceleration of

various applications with characteristics similar to AMG [12]–

[15] as well as their use in scalable HPC clusters [16]–[19].

Still, acceleration of AMG on FPGAs is quite challenging

and complicated. In fact, AMG invokes a variety of kernels

on a large but unpredictable volume of data, making high

hardware utilization difficult to achieve. Furthermore, not only

does AMG demand irregular memory access, but also the size

of required memory is not known in advance [7]; together

these attributes of AMG require a well-considered design of

the memory subsystem.

In this paper, we propose a novel reconfigurable framework,

FP-AMG, to accelerate AMG on FPGAs. To address the

challenges mentioned above, FP-AMG is designed with (1) a

smart memory subsystem with finely-tuned architecture design

and (2) novel reconfigurable computation engines that support

and can be efficiently used by all kernels in AMG. All

functions–including Sparse Matrix Multiplication (SpGEMM),

sparse matrix vector multiplication (SpMV), interpolation con-

struction, and parallel large-scale maximum search–are fully

supported by the proposed engine. Although we do not pursue

this idea further here, this design can potentially be generalized

to (the many) other applications that rely on scalable SpMV

or SpGEMM. We summarize the contributions of this work:

• The first FPGA-based AMG accelerator, FP-AMG.

• A novel reconfigurable and highly scalable architecture

that can be successively used by various kernels in

AMG and so ensure continuously high device resource

utilization.

• A smart memory subsystem architecture design to address

the irregular memory access issue of AMG and also a

number of optimizations to reduce the memory demand.

• A novel methodology for design parameter tuning, which

embraces the dynamic nature of AMG to efficiently map

FP-AMG to different FPGAs.

• Experimental results that show FP-AMG provides 6.6×
and 2.5× speedup for FPGAs with and without HBM

support, respectively, compared with an optimized im-

plementation running on a server-class Intel Xeon CPU.

The organization of this paper is as follows. Section II

introduces AMG. Section III describes in detail the FP-AMG

framework including architecture, design, memory partition-

ing, data flow, optimizations, and mapping methodology. Sec-

tion IV presents and analyzes experimental results. In Section

V, related work is discussed. Finally, Section VI provides a

summary and future directions.

II. BACKGROUND

Suppose that the linear systems of equations to be solved

are given as follows:

Ax = b (1)

where A is a sparse matrix with elements aij (AǫRn×n), x is

an unknown vector to be calculated (xǫRn), and b is the right

hand side (RHS) of the equation (bǫRn). Let us define the grid

as the set of grid points in which each grid point i corresponds

to xi and the grid is denoted by ω = { 1, 2, ..., n}. The systems

of equations, which may be derived from PDE discretization of

a given problem, govern the relationships between grid points.

Multigrid solvers start with an initial guess of the solution.

Then smoothing is iteratively applied to reduce the high

frequency portion of the error e. The low frequency portion

of the error is eliminated by solving the error on a coarser

(smaller) grid and then interpolating it back onto a finer

(larger) grid. Hence, multigrid solvers in general have L levels;

there are two grid transfer operators to transfer from one level

to another: restriction R, which converts a fine grid to a coarse

grid, and interpolation P, which does the opposite. The size of

the restriction (interpolation) matrix is n × n̂ (n̂ × n), where

n̂ is much less than n.

In multigrid methods, interpolation, restriction, and thus

obtaining the next grid, is trivial and predefined; in contrast

AMG makes use of the information of matrix A (not the grid)

which is not known in advance. Therefore, in AMG there

is a setup phase in which coarsening and interpolation are

constructed in terms of matrices. Then in the solve phase the

problem is solved. Note that FP-AMG supports both setup and

solve phases.

A. Setup Phase

Assume that ωl, Al, P l, and Rl are the grid, grid op-

erator, interpolation, and restriction in level l, respectively.

Algorithm 1 [20] shows the AMG setup phase. First, in

Calc StrengthMat function, strength matrix (S) is calculated

(line 3). The strength matrix (of size n× n) is defined as

Sij =

{

1 if i 6= j and − aij ≥ θ ×maxk 6=i(−aik)
0 otherwise

(2)

where θ is a positive constant number < 1. We say that grid

point i strongly depends on point j if Sij is equal to one.

Next, an unidirected graph G = (V,E) is defined in

Build Graph function (line 4) where E = {{i, j}ǫ{V ×
V }|Sij = 1 or Sji = 1}. Subsequently, in each level the

grid is partitioned into coarse grid points (C-points) and fine

grid points (F-points) (line 5) which is done by the coarsening

algorithm (Algorithm 2 [20]). C-points are those that will be

chosen in the next coarse level.

Algorithm 1 AMG Setup Phase

Input: A0

Output: lastLevel, minGridSize, Ai, P i−1, Ri−1 ∀ i ∈ {1, . . . , lastLevel-1}

1: k ← 0
2: while ωk ≥ minGridSize do
3: S ← Calc StrengthMat(Ak)
4: G← Build Graph(S)
5: {C,F} ← coarsening(G)
6: ωk+1 ← C
7: Pk ← interpolation(Ak, S, C, F)
8: Rk ← Interpolation(Ak, S, C, F) ⊲ often Rk = (Pk)T

9: Ak+1 ← RkAkPk ⊲ triple matrix multiplication
10: k ← k + 1
11: end while
12: lastLevel← k

Algorithm 2 PMIS Coarsening Algorithm

Input: G = (V, E) with weights w(i) = Scount
i + Rand ([0, 1]) ∀ i ∈ V

Output: F (set of F-points), C (set of C-points)

1: F ← {i ∈ V Scount
i = 0}

2: C ← ∅
3: V ′ ← V \F ⊲ Take the F-points out of the remaining vertex set.
4: G′ ← (V ′, S) ⊲ The subgraph induced by the remaining vertex set.
5: while V ′ 6= ∅ do
6: i ∈ I ⇐⇒ w(i) > w(j) ∀ j with {i, j} ∈ E’ ⊲ Choose an

independent set I of V’ in G’.
7: C ← C ∪ I ⊲ Make all elements of I, C-points.
8: F ← F ∪ Fnew , with Fnew = {j ∈ V ′\I|∃i ∈ I : i ∈ Sj} ⊲

Make all elements of V’ \ I that are strongly influenced by a new C-point,
F-points.

9: V ′ ← V ′\{I ∪ Fnew} ⊲ Remove all new C- and F-points.
10: G′ ← (V ′, S)
11: end while

Then the interpolation function creates the R and P matrix

(line 7-8). It specifies how F-points can be expressed in terms

of C-points. For each F-point i, the neighborhood of i is

defined as the set of all points j 6= i such that aij 6= 0.

These points can then be categorized:

• strongly depends on i, is a C-point, and denoted as Ci

• strongly depends on i, is an F-point, and denoted as Ds
i

• does not strongly depend on i and is denoted as Dw
i

The interpolation matrix can then be constructed by the

following formula [4]:

Pij = −
aij +

∑

mǫDs
i
(

aimamj∑
kǫCi

amk
)

aii +
∑

nǫDw
i
ain

(3)

Next, grid operators are created by a triple matrix multipli-

cation (two SpGEMMs) (line 9). Finally, the algorithm termi-

nates whenever the number of C-points is less than a thresh-

old. We divide the setup phase into two parts: restriction-

interpolation construction (line 3-8) and triple matrix mul-

tiplication (line 9). It should be noted that there are a large

number of algorithms for coarsening and interpolation. In this

work, we focus on classical interpolation and, due to its high

parallelism, the PMIS coarsening algorithm [20] as it is used

in [7].

B. Solve Phase

Algorithm 3 describes a popular V(µ1, µ2)-cycle [20]. The

entire V-cycle is repeated for a number of iterations until the

error is below a threshold tolerance. Three important kernels

used in this phase are smoothing, residual computation,

and restriction/interpolation. The last two ones rely on pure

SpMV kernel. The formula for residual computation is as

follows:

r = b−Ax (4)

For smoothing, we focus on hybrid Gauss-Seidel in this

work due to its satisfactory convergence which also used in

[7]. We call it a pseudo SpMV kernel due to its similar

computation pattern to that of SpMV. The so-called pseudo

SpMV contains a parallel and a sequential part. Given P

parallel processors, the following formulas illustrate pseudo

SpMV for n
P

iterations:

xnew
k =

bk −Akx
in(k, r) + akkx

old
k

akk
(5)

xin
j (k, r) =

{

xnew
j if k > j and n

P
× r ≤ j < n

P
× (r + 1)

xold
j otherwise

(6)

where k = n
P

× r + i ∀ rǫ{0, ..., P − 1} and xk, bk, and

ak denote the kth element of x and b vector and kth row of

matrix A, respectively, and i represents iteration number. xnew

is the updated x vector after smoothing while xold is x vector

before smoothing.

Algorithm 3 AMG Solve Phase

Input: u0 (initial guess), f0, (Ai∀i ∈ {0, . . . , lastLevel−1}), (P i, Ri∀i ∈
{0, . . . , lastLevel − 2})
Output: u0 (solution)

1: V-Cycle (Ak, Rk, Pk, uk, fk)
2: if k == lastLevel-1 then
3: Solve Akuk = fk with a direct solver.
4: else
5: Apply smoother µ1 times to Akuk = fk . ⊲ Smoothing
6: rk ← fk −Akuk ⊲ residual computation
7: rk+1 ← Rkrk ⊲ restriction
8: V-Cycle (Ak+1, Rk+1, Pk+1, ek+1, rk+1)
9: ek ← Pkek+1 ⊲ interpolation

10: uk ← uk + ek ⊲ correct solution
11: Apply smoother µ2 times to Akuk = fk . ⊲ Smoothing
12: end if

III. FP-AMG FRAMEWORK

In this section, we discuss the design details of FP-AMG

framework. First, the proposed architecture including the

efficient memory subsystem and reconfigurable computation

engine, is introduced. Second, we elaborate the proposed

memory partitioning method. Third, the data flow of FP-AMG

at each phase is presented. Fourth, three extra optimizations

on memory storage requirement, memory bandwidth, and data

reuse are introduced. Finally, the methodology of how FP-

AMG is mapped onto FPGAs as well as the parameter tuning

method of that mapping is presented.

A. Architecture

As stated in Section I, different kernels must be invoked in

AMG. One solution is to design a specialized hardware for

each kernel and connect the intermediate buffers in a pipeline

manner. This approach, however, is not possible in AMG since

each kernel must wait until previous kernel has finished. In

this work, we take advantage of the similarities of computation

patterns among various kernels to design a flexible architecture

which can be reused recursively by all AMG kernels.

Various kernels in AMG require random access to on-

chip memory. As the number of processing units increases

(for more parallelism) the number of simultaneous memory

requests also grows. This increases both the memory access

time and the complexity of the memory interface. To solve this

problem, we propose a scalable island-based architecture with

bank resolvers to efficiently process the irregular data access

requests.

The overall architecture is depicted in Fig. 1. It consists

of a number of islands where each island has a 2-D PE

array, input buffers, output buffers, banked vectors, and banked

matrices. Banked vector (matrix) buffers, as the name implies,

are divided into banks to efficiently supply multiple memory

requests from PEs. Banked vectors are replicated for each

island to reduce the complexity and memory access time of a

large number of requests.

Island

Banked

Matrix

Banked

Vector

PE Array

Replicated

Input

Buf

Output

Buf

Island

Banked

Matrix

Banked

Vector

PE Array
Input

Buf

Output

Buf

DRAM

Fig. 1. FP-AMG Overall Architecture

Fig. 2 shows the detailed architecture of an island. It is

formed by a variety of components including PEs, end of row

processing unit (EoR-PU), bank resolver, and dynamic buffers.

In the following subsections, we elaborate on each of these

components.

1) PE: Each PE in FP-AMG can perform multiplication,

accumulation, comparison, or their combinations as required

by AMG kernels. The datapath is highly configurable to

enable or disable modules during each AMG phase. Moreover,

forward data flow and backward propagation of data between

PEs is supported. This versatility allows FP-AMG to support

different kernels.

2) EoR-PU: For each row of the array there is an EoR-PU

which performs the post-processing and writes to the output

PE PE PE EoR-PU

Input

Matrix

Buf

Bank

Resolver

PE PE PE

Matrix A

Buf

PE PE PE

Input

Matrix

Buf

Input

Matrix

Buf

Input

Matrix

Buf

Matrix A

Buf

Input

Matrix

Buf

Input

Matrix

Buf

Input

Matrix

Buf

Matrix A

Buf

Input

Matrix

Buf

Input

Matrix

Buf

EoR-PU

EoR-PU

Bank

Resolver
Bank

Resolver

Banked

Matrix

+/-

x

Counter

Fixed Point

Comparator

Strength

Count

C/F/Not Visited

Weakly

Connected
Banked Flag

+/-

Divider

Output

Vector

Buf

Rand
Diag

RHS
Denom

Min

Banked

Vector

Banked

Matrix

Banked

Vector
Banked

Matrix

Banked

Vector

Value

Pointer

Output

Matrix

Buf

Neighbor List

Buf

Output

Vector

Buf

Output

Matrix

Buf

Output

Vector

Buf

Output

Matrix

Buf

Neighbor List

Buf

Neighbor List

Buf

B
an

k
 R

e
so

lv
er

Min

Fine List

Banked Vector

Coarse List

Banked Vector

EoR-PU

PE

Dynamic

Buffer
Island

Fig. 2. FP-AMG Detailed Architecture

buffers. There are also some buffers which store intermediate

results during the coarsening/interpolation construction phase.

3) Buffers: Banked vector (banked matrix) is employed in

the SPMV and pseudo SpMV (SpGEMM) kernels and holds

the input vector (matrix). Banked vector contains two distinct

new and old buffer required by pseudo SpMV kernel. Neighbor

list, strength count, and weakly connected buffers store the

indices of strong neighbors, number of strongly connected

points (Scount
i), and a flag that determines the weak connection

for the current grid point, respectively. C/F/not-visited is a 2-

bit buffer which indicates whether the grid points are C-point,

F-point, or in not-visited state. Fine list (coarse list) is a small

register file (RF) which holds a number of F-points (C-points).

It will be discussed in the next subsections.

4) Bank Resolver: This component manages irregular

memory access to either banked vector or banked matrix

(depending on the type of kernel) and directs the requests

to the correct bank. For the banked vector in pseudo SpMV

kernel, it selects either the new or old buffer according to ROW

and the requested address. In case of bank conflicts, the bank

resolver prioritizes requests and queues the IDs together with

the addresses. Also, it can broadcast data if all of the requests

are for the same address within a bank.

5) Dynamic Buffer: This type of memory is itself consisted

of two buffers: value and pointer (points to value buffer). As a

result, the value buffer could be partitioned into segments with

desired sizes for different iterations. The proposed dynamic

buffer design is adopted in the output matrix buffers for

the SpGEMM kernel and the neighbor list buffer during the

restriction/interpolation construction phase.

B. Memory Partitioning

Memory partitioning can have a substantial effect on the

overall performance by simplifying data access control and so

eliminating access conflicts and enhancing memory concur-

rency. In this work, the memory is partitioned as shown in

Fig. 3. We use a 3 × 2 PE array (six colors) as an example to

illustrate the proposed memory partitioning. Zero values are

represented by rectangles with dotted lines. The input matrix

is statically partitioned in rows into chunks and columns in

an interleaved manner. Banked vector together with banked

matrix are divided by the number of COLs (of the PE array),

and the output vector and output matrix are partitioned in rows.

The elements of the input matrix and banked vector/matrix

are accessed and consumed by PEs with the same color. As is

evident in Fig. 3, each PE is assigned with 6 elements from

2 rows of the input matrix and 3 elements from the banked

vector. Each element of the banked vector is shared and can be

accessed by PEs at the same COL (which is why each element

block has 3 colors). In this work, we use Compressed Sparse

Row (CSR) format to store matrices.

Although there are other partitioning methods, such as

column-wise partitioning and interleaved partitioning of matrix

A, the following reasons make them unusable. First, it is

possible to partition the first input matrix into either rows

or columns. However, the sequential nature of hybrid Gauss-

Seidel smoothing mandates the use of row partitioning in

pseudo SpMV. Second, during the restriction/interpolation

construction phase, matrix A should be partitioned in rows

when evaluating the maximum in Eq. 2.

C. Data Flow

Before describing data flow, assume that ROW (COL) de-

notes the row (column) of the PE array to distinguish it from

those of the input matrix. There is global synchronization

between the PEs, both within islands and between islands,

across each phase and step described below.

1) Restriction/Interpolation Construction: This phase is

accomplished in three steps as elaborated below.

First, in Calc StrengthMat step, the maximum negative

element (minimum) of each row in matrix A is determined

(Eq. 2). Elements of matrix A are fetched from the input

matrix buffer to the PEs. The smaller element of each COL

and previous COL, which are compared in PEs, moves forward

PE(0,0) PE(0,1)

PE(1,0) PE(1,1)

PE(2,0) PE(2,1)

EoR-PU(0)

EoR-PU(1)

EoR-PU(2)

Input

Matrix
(Input) Banked

Vector

(Input) Banked

Matrix

Output

Vector

Output

Matrix

X OR OR=

Fig. 3. Memory Partitioning in FP-AMG

horizontally until it reaches the EoR-PU, where the minimum

value will be held. After visiting all of elements in the row, the

minimum value in EoR-PU moves backward to all PEs in the

same ROW. Before proceeding to the next row of the matrix,

each ROW builds a neighbor list, strength count, and weakly

connected buffers. This process is repeated for the entire chunk

of data. Also, there is no need to implement Build Graph

function as it is done by storing the number of neighbors in

strength count buffer while creating neighbor list buffer.

Second in coarsening step, each EoR-PU with the aid

of neighbor list and strength count determines whether the

corresponding grid point is a C-point or F-point. This can

be accomplished by comparing strength count buffer and

updating the C/F/not-visited buffer. At first, all of the entries

of the C/F/not-visited buffer are filled with not-visited and the

process of coarsening algorithm finishes whenever none of the

entries is in not-visited state.

Finally, in interpolation step, PEs in all COLs accumulate

matrix A elements if they are weakly connected points for

the current grid point. In case they are not being weakly

connected, the column index and value is stored (only for

the current grid point) in fine list and coarse list if it is a F-

point and C-point, respectively. Then the sum of the result of

accumulation in COLs is computed while it is moved forward

horizontally and the denominator in Eq. 3 is stored in the

denom register in EoR-PU. Again, before proceeding to the

next row of matrix A, for all of the valid elements of coarse

list, the numerator of Eq. 3 is computed and the result of

matrix P element is written to the output matrix buffer.

2) Triple Matrix Multiplication: In this phase (also called

RAP), first Z = A × P and then R × Z is computed. In

either case, the elements in input matrix buffers are stationary

until all the corresponding banked matrix elements are fetched.

For each pair of elements the product is computed in the PE

and move to the next COL where the column indexes are

compared. If they are equal the partial sum is added to the

product of two input matrix elements in the new PE. The

partial sum is moved forward horizontally until the result is

written to the output matrix buffer by EoR-PU.

3) Smoothing: As shown in Eq. 5, most of the computation

in smoothing relies on the SpMV kernel. In SpMV, matrix A

elements are fetched one by one from the input matrix buffer.

The corresponding banked vector, according to the column

index of matrix A element, is fetched, multiplied with the value

of A elements, and accumulated. Finally, after computing all

partial sums, they are added together as they move forward

until they reach EoR-PU where final addition to RHS and the

diag register (aii in Eq. 3) and division takes place.

4) Residual Computation: This procedure looks like the

smoothing except the post-processing step (Eq. 4).

5) Restriction/Interpolation: This procedure is a pure

SpMV kernel, which is discussed in previous subsections.

D. Optimizations

1) Optimization 1: In AMG, it often happens that the size

of a buffer is not known in advance [7]. More importantly,

the storage demand varies significantly in different rows of

the matrix. Assuming a fixed size for each row may lead to

wasted resources. Instead, we reduce the needed memory by

using a dynamic buffer.

2) Optimization 2: Instead of storing a large matrix S of

size n × n we store three matrices of much smaller size: a

neighbor list buffer, a strength count buffer, and a weakly

connected flag. Strength count (neighbor list) can be reused

multiple times by storing entirely (a memory tile) in on-chip

memory. Next subsection provides a definition for memory

tile.

3) Optimization 3: During restriction/interpolation con-

struction, the denominator of Eq. 3 is computed once and

will be reused multiple times when constructing the P matrix.

Moreover, the value and column index of C- and F-points for

the current grid point are stored into coarse list and fine list

when computing the denominator and will be read later when

computing the numerator of Eq. 3.

E. FPGA Mapping Methodology

Having an array-like architecture in FP-AMG greatly sim-

plifies the complicated task of mapping to an FPGA with

constrained resources. There are, however, several design

parameters that still need to be determined.

In real applications, since matrices (i.e. A, R, and P) can be

quite large, they are stored in off-chip DRAM. But because

these sizes vary significantly between levels, there is also a

possibility of storing entire matrices at higher levels (having

smaller grids). We refer to the threshold level as the first

level where matrices are stored on-chip. This on-chip storage

(denoted as a memory tile) also applies to the neighbor list

and weakly connected buffers due to their large memory

requirements.

Other design parameters are the size of the PE array and

the number of islands. Let #ROW, #COL denote the number of

rows and columns within each island and n denote the number

of islands. In this work, we assume #ROW is 32. #COL should

be small enough so that PEs do not become idle due to the

small average number of non-zeros per matrix row. It should be

noted that, as n increases, more on-chip memory is needed due

to replication. Although having more islands does not improve

the performance if we are in the memory bound phase (the first

few levels of the solve phase), it does boost the performance

otherwise (rest of the solve phases and the setup phase).

There are three constraints within this framework:

• Constraint1: Bounded by the amount of parallelism (n×
#ROW) that the smoothing step offers.

• Constraint 2: Bounded by the on-chip memory as a result

of a high threshold level or a large n.

• Constraint 3: Bounded by LUTs, FFs, or DSP blocks

as a result of a there being a large number of processing

units (PE or EoR-PU).

In memory-bound applications it is important to measure

how deep this bound is. We define the memory bound ratio:

MBR =
#ROW ×#COL× n× numBytes× f

bandwidth
(7)

where numBytes is the number of bytes that each PE requires

from off-chip memory and f is the operating frequency of

FPGA device. If MBR is large enough, it is better to invest

more on-chip memory to store matrices in levels with larger

grid (lower levels) rather than increasing n.

Fig. 4 shows the design parameter tuning used in this frame-

work to find n and threshold level. We first start with setting

n and threshold level to one and the last level, respectively.

Then, MBR determines the order of tuning n and threshold

level. In this work, k is set to 2.

n = 1

threshold level=

#levels - 1

MBR > k

Decrease

threshold level
Increase n

Decrease

threshold level
Increase n

Constraints

1, 2, 3

violated?

Constraint

 2

violated?

end

Constraint

2 violated?

Constraints

1, 2, 3

violated?
Yes

No

Yes

No

Yes

No

Increase

threshold level

Decrease n

Decrease n

Increase

 threshold level

No

Yes

Yes

No

Fig. 4. Design Parameter Tuning

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Since AMG is mostly memory bound we employ two

kinds of FPGA boards, one without HBM (Xilinx VCU118)

and another with HBM (Xilinx Alveo U280). The maximum

memory bandwidth of the VCU118 is 4×19.2 GB/s made

up of four memory channels each connected to a DRAM

DDR4-2400. The Alveo U280 is equipped with HBM2 with

maximum total bandwidth of 460 GB/s. The design is coded in

Verilog HDL and the utilization results are reported by Vivado

Design Suite 2018.3. The operating frequency of the current

implementations is 250 MHz.

To evaluate FP-AMG, we compare it with a well-known

CPU-based solver, BoomerAMG, which is based on the

HYPRE library. Evaluation is based on the open-source code

[21] by modifying it to run AMG standalone (rather than as

a preconditioner). We run the solver on an Intel Xeon E5-

2680-V4 (14 cores) for six sparse matrix benchmarks (with

level 2 optimization). Table I summarizes the specifications

of the benchmarks; lap3d is from [21] while the others

are from the SuiteSparse Matrix Collection [22]. To further

show the efficacy of FP-AMG, we compare its performance

with AmgX running on an Nvidia Tesla P100 (with CUDA

10.1) based on the open-source code [23]. The numerical

precision for CPU, GPU, and FP-AMG implementations is

based on double-precision and single-precision floating point,

and mixed single-precision floating point with customized-

precision integer arithmetic, respectively.

TABLE I
BENCHMARK SPECIFICATIONS

benchmark #rows #non-zeros/row

apache2 715,176 7
atmosmodd 1,270,432 7

ecology2 999,999 5
G3 circuit 1,585,478 5

lap3d 1,000,000 27
parabolic fem 525,825 7

B. Resource Utilization

The resource requirements for a single processing unit (PE

or EoR-PU) in FP-AMG (except BRAM) is given in Table

II. The results are after implementation on a VCU118 under

timing constraint of 4 ns. While EoR-PU requires more LUTs

and FFs, the resources can be amortized over a row since there

is only one EoR-PU per ROW.

After obtaining the resource requirements for PE and EoR-

PU, we apply the proposed design parameter tuning to find n

and threshold level. Table III shows these parameters together

with #COL in the considered benchmarks for both FPGAs.

According to Table I, since the number of non-zeros per

row of matrix A in lap3d is much higher than that of other

benchmarks #COL is set to 8 while it is considered as

4 for other benchmarks. It is evident from Table III that

HBM-enabled FPGA (Alveo U280) typically has higher n

and threshold level as a result of higher MBR provided by

increased memory bandwidth.

TABLE II
RESOURCE REQUIREMENT FOR PE AND EOR-PU

Component LUT FF DSP

PE 385 638 4

EoR-PU 1080 1776 2

TABLE III
DESIGN PARAMETER TUNING RESULTS IN SIX BENCHMARKS FOR

VCU118 AND ALVEO U280

Benchmark HBM? # levels threshold level n # COLs

apache2
—

8
2 1

4
HBM 3 4

atmosmodd
—

8
3 2

4
HBM 5 3

ecology2
—

8
2 2

4
HBM 3 3

G3 circuit
—

9
3 1

4
HBM 4 2

lap3d
—

6
1 3

8
HBM 1 3

parabolic fem
—

8
1 4

4
HBM 1 4

Fig. 5 gives the breakdown utilization of different com-

ponents in FP-AMG for both FPGAs under six benchmarks

after design parameter tuning. In this figure, utilities denote

C/F/Not-visited buffer, memory controller, PE array controller,

and other miscellaneous components. In most of the bench-

marks, PE contributes LUT and FF utilization more than other

components (EoR-PU, bank resolver, and utilities). Matrices

A, R, P, and Z as well as vector x are stored in UltraRAM

(URAM) due to their relatively large size. Thus, URAM

utilization is comprised of input matrix, banked matrix, and

banked vector buffers. In contrast, neighbor list, weakly con-

nected, strength count, C/F/Not-Visited buffers are stored in

block RAM (BRAM).

The left chart in Fig. 5 (Xilinx VCU118) shows that

utilization is limited by URAM since AMG is mostly memory-

bound. LUT, FF, and DSP utilization depend on n and #COL.

For instance, lap3d has the highest DSP utilization since it

has the highest product of n and #COL. However, the size

of required memory for different levels as well threshold level

determines the BRAM and URAM utilization. Note that the

utilization breakdown for lap3d is different from the other

benchmarks. This is because the strength count buffer is stored

in all levels while the neighbor list buffer is stored only from

the threshold level. Since the size of matrix A varies drastically

between the first level and threshold level in lap3d, strength

count utilization is higher than that of neighbor list.

As it is depicted in the right chart of Fig. 5 (Xilinx Alveo

U280), the overall utilization is higher due to larger n (as

a result of higher bandwidth). Also, URAM utilization is

mostly dominated by the banked vector since the threshold

level in this FPGA is larger than that of VCU118 (non-HBM).

A higher threshold level requires less memory storage for

matrices and other buffers because the size of the problem

drops off drastically as the level increases. But, vector x must

still be stored in banked vector independent of the value of

threshold level. Also, atmosmodd benchmark has the smallest

BRAM utilization with respect to other benchmarks since the

threshold level is larger than the others.

C. Performance

Fig. 6 shows the execution time of running AMG on the

baseline CPU, a GPU, an FPGA without HBM (VCU118),

and an FPGA with HBM (Alveo U280). In this work, three

modes are considered for the CPU baseline: CPU-1 (1 thread),

CPU-14 (14 threads), and CPU-28 (28 threads), all of them

are utilizing one node. Execution time for the CPU-1 mode

is normalized to 100 to facilitate comparison. In most of the

cases (except G3 circuit) CPU-14 mode shows slightly better

performance than CPU-28 mode. The underlying reason is that

hyperthreading has no benefit here due to resource constraints

and also because the number of iterations it takes for AMG

to converge increases, which slows down the solve phase.

Although a large fraction of time is devoted to the solve phase

(green, light, and dark blue colors), it is also known that the

setup time is one of bottlenecks in multi-node implementations

and contributes a larger fraction of time [7].

Overall the performance of FP-AMG is on average 6.6×
(2.2×) and 2.5× (0.8×) compared to that of the best CPU

(GPU) implementation for FPGAs with and without HBM

support, respectively. Generally the benchmarks that exhibit

better performance on the FPGAs have 1) small threshold

level, 2) small number of non-zero elements per matrix row

(spending less time in memory-bound region), and 3) large n.

Hence, G3 circuit, due to its small amount of parallelism (n),

and lap3d, due to a large number of non-zero elements per

row, have low performance in both FPGA configurations.

V. RELATED WORK

There has been a substantial effort on creating high per-

formance implementations of AMG. One of the earliest [5]

presents BoomerAMG, an AMG solver for distributed-memory

architectures. This is extended in [6] to support OpenMP for

multi-core architectures. J. Park, et al. [7] develop and analyze

a set of optimizations for AMG targeting modern x86 multi-

core processors. In [8] a library called AmgX is proposed for

AMG acceleration in multi-GPUs. Although there is a work

on FPGA-based multigrid acceleration [24], [25] for molecular

dynamic simulations [26], [27], there is no existing work on

accelerating AMG on FPGA as far as we are aware.

In FP-AMG, a number of kernels rely on the computation

of SpMV and SpGEMM. Thus, it is essential to review some

of that prior work. In [28] an FPGA optimized SpMV kernel

is proposed which utilizes a banked vector together with a

customized encoding. By using a banked vector replication of

buffers is eliminated. However, a without replication scheme

limits their scalability to only 32. Currently, the increase in

on-chip memory and the availability of HBM allows more

processing elements to work in parallel. The SpMV kernel

in our work is based on [28] but generalized to offer more

scalability for this current generation of FPGAs. The authors in

[29] propose an SpMV architecture relying on the CSC format.

Although they could eliminate the need to store the input

vector in on-chip memory, the output vector must be stored in

on-chip memory instead. In [30] a design space exploration

for SpGEMM on FPGAs is proposed to study performance,

energy-delay, and power-delay product. Their data partitioning

differs from ours as they partition the second input matrix into

columns, while all PEs can have access to the entire of the

first matrix; this is not appropriate for FP-AMG.

a
p

a
ch

e2
a

tm
o
s.

..
ec

o
lo

g
y

G
3

_
c
ir

cu
it

la
p

3
d

p
a
r
_
F

E
M

a
p

a
ch

e2
a

tm
o
s.

..
ec

o
lo

g
y

G
3

_
c
ir

cu
it

la
p

3
d

p
a
r
_
F

E
M

a
p

a
ch

e2
a

tm
o
s.

..
ec

o
lo

g
y

G
3

_
c
ir

cu
it

la
p

3
d

p
a
r
_
F

E
M

a
p

a
ch

e2
a

tm
o
s.

..
ec

o
lo

g
y

G
3

_
c
ir

cu
it

la
p

3
d

p
a
r
_
F

E
M

a
p

a
ch

e2
a

tm
o
s.

..
ec

o
lo

g
y

G
3

_
c
ir

cu
it

la
p

3
d

p
a
r
_
F

E
M

a
p

a
ch

e2
a

tm
o
s.

..
ec

o
lo

g
y

G
3

_
c
ir

cu
it

la
p

3
d

p
a
r
_
F

E
M

a
p

a
ch

e2
a

tm
o
s.

..
ec

o
lo

g
y

G
3

_
c
ir

cu
it

la
p

3
d

p
a
r
_
F

E
M

a
p

a
ch

e2
a

tm
o
s.

..
ec

o
lo

g
y

G
3

_
c
ir

cu
it

la
p

3
d

p
a
r
_
F

E
M

a
p

a
ch

e2
a

tm
o
s.

..
ec

o
lo

g
y

G
3

_
c
ir

cu
it

la
p

3
d

p
a
r
_
F

E
M

a
p

a
ch

e2
a

tm
o
s.

..
ec

o
lo

g
y

G
3

_
c
ir

cu
it

la
p

3
d

p
a
r
_
F

E
M

U
T

IL
IZ

A
T

IO
N

 (
%

)

PE EoR-PU Input Matrix Banked Vector

Banked Matrix Neighbor List Weakly Connected Strength Count

Bank Resolver Utilities

100

0

LUT FF BRAM URAM DSP

Alveo U280

VCU118

LUT FF BRAM URAM DSP

Fig. 5. Resource Utilization under Six Benchmarks for Xilinx VCU118 and Xilinx Alveo U280

a
p

a
ch

e2

a
tm

o
s.

..

ec
o
lo

g
y

G
3
_

ci
rc

u
it

la
p

3
d

p
a

r_
F

E
M

a
p

a
ch

e2

a
tm

o
s.

..

ec
o
lo

g
y

G
3
_

ci
rc

u
it

la
p

3
d

p
a

r_
F

E
M

a
p

a
ch

e2

a
tm

o
s.

..

ec
o
lo

g
y

G
3
_

ci
rc

u
it

la
p

3
d

p
a

r_
F

E
M

a
p

a
ch

e2

a
tm

o
s.

..

ec
o
lo

g
y

G
3
_

ci
rc

u
it

la
p

3
d

p
a

r_
F

E
M

a
p

a
ch

e2

a
tm

o
s.

..

ec
o
lo

g
y

G
3
_

ci
rc

u
it

la
p

3
d

p
a

r_
F

E
M

a
p

a
ch

e2

a
tm

o
s.

..

ec
o
lo

g
y

G
3
_

ci
rc

u
it

la
p

3
d

p
a

r_
F

E
M

N
O

R
M

A
L

IZ
E

D
 T

IM
E

RP Construction RAP Smooth Residual Restrict/Interp (RI) Setup=RP+RAP Solve=Smooth+Residual+RI

2
2

.3

2
2

.3

1
8

.9

2
9

.4

1
4

.4

2
9

.5

2
6

.4

2
3

.8

2
2

.5 2
8

1
4

.4

3
1

.6

1
1

.3

8
.9

8
.2 1
0

.5

8
.9

7
.9

2
.6

3
.5

3
.2 4
.1

3
.5

3
.6

100

0

FPGA-HBM FPGA CPU-28 CPU-14 CPU-1 GPU

8

8
.4

5
.3

5
.1
 1

1
.7

8
.1

Fig. 6. Performance Comparison of HYPRE CPU Implementation, AmgX GPU Implementation, and FP-AMG for Six Benchmarks

VI. CONCLUSION

In this work, we present a reconfigurable framework to

accelerate AMG solvers. In this framework, we propose a

scalable architecture that can be used successively by various

AMG kernels. To address irregular memory access and reduce

memory storage, a smart memory subsystem together with

a number of optimizations are proposed. Given the dynamic

memory demand in AMG, a methodology for design parameter

tuning is developed to map FP-AMG to different FPGAs effi-

ciently. We evaluate the efficiency of FP-AMG by running six

sparse matrix benchmarks on two FPGAs: one with and one

without HBM. The experimental results reveal that FP-AMG

can provide on average 2.5× and 6.6× speedup compared

to a server-class Intel Xeon CPU for an FPGA without and

with HBM, respectively. Also, the HBM-enabled FPGA could

outperform the GPU implementation by a factor of 2.2×.

FP-AMG demonstrates promising performance improve-

ment on a single FPGA board. However, the emergence of

AMG in extreme scale systems leads us to consider ac-

celeration on a cluster of FPGAs. CPU clusters can have

comparatively more difficulty with strong scaling, especially

in 3D problems. Large communication overhead in levels with

coarse (small) grids can drastically limit AMG performance.

We would like to address this bottleneck in a cluster-based

FPGA environment that benefits from direct FPGA to FPGA

communication. Also, we would like to expand our framework

to embrace a wider range of solvers and smoother.

ACKNOWLEDGMENTS

This work was supported, in part, by the NSF through

awards CCF-1618303 and CCF-1919130; the NIH through

awards 1R41GM128533 and R44GM128533; and by a grant

from Red Hat.

REFERENCES

[1] K. Stüben, “A review of algebraic multigrid,” Journal of Computational

and Applied Mathematics, vol. 128, no. 1, pp. 281 – 309, 2001,
numerical Analysis 2000. Vol. VII: Partial Differential Equations.

[2] R. D. Falgout, “An introduction to algebraic multigrid,” Computing in

Science Engineering, vol. 8, no. 6, pp. 24–33, Nov 2006.
[3] J. W. Ruge and K. Stüben, Algebraic Multigrid, pp. 73–130. [Online].

Available: https://epubs.siam.org/doi/abs/10.1137/1.9781611971057.ch4
[4] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid

Tutorial, Second Edition, 2nd ed. Society for Industrial and Applied
Mathematics, 2000. [Online]. Available: https://epubs.siam.org/doi/abs/
10.1137/1.9780898719505

[5] V. E. Henson and U. M. Yang, “BoomerAMG: A Parallel Algebraic
Multigrid Solver and Preconditioner,” Appl. Numer. Math., vol. 41, no. 1,
pp. 155–177, Apr. 2002.

[6] A. H. Baker, T. Gamblin, M. Schulz, and U. M. Yang, “Challenges of
scaling algebraic multigrid across modern multicore architectures,” in
2011 IEEE International Parallel Distributed Processing Symposium,
May 2011, pp. 275–286.

[7] J. Park, M. Smelyanskiy, U. M. Yang, D. Mudigere, and P. Dubey,
“High-performance algebraic multigrid solver optimized for multi-core
based distributed parallel systems,” International Conference for High

Performance Computing, Networking, Storage and Analysis, vol. 15-20-
Nove, pp. 1–12, 2015.

[8] M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton,
S. Layton, N. Markovskiy, I. Reguly, N. Sakharnykh, V. Sellappan,
and R. Strzodka, “AMGX: A library for GPU accelerated algebraic
multigrid and preconditioned iterative methods,” SIAM Journal on

Scientific Computing, vol. 37, no. 5, pp. S602–S626, 2015.
[9] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan, and

W. Gropp, “Modeling the performance of an algebraic multigrid cycle
on hpc platforms,” in Proceedings of the International Conference on

Supercomputing, 2011, pp. 172–181.
[10] W. Mitchell, R. Strzodka, R. D. Falgout, and S. F. McCormick, “Parallel

performance of algebraic multigrid domain decomposition (AMG-DD),”
CoRR, vol. abs/1906.10575, 2019.

[11] S. Liu, C. Eisenbeis, and J. Gaudiot, “Speculative execution on gpu: An
exploratory study,” in International Conference on Parallel Processing,
2010, pp. 453–461.

[12] Q. Xiong, A. Skjellum, and M. Herbordt, “Accelerating MPI Message
Matching Through FPGA Offload,” in Proc. IEEE Conf. on Field

Programmable Logic and Applications, 2018.
[13] T. Geng, T. Wang, A. Sanaullah, C. Yang, R. Xuy, R. Patel, and M. Her-

bordt, “FPDeep: Acceleration and Load Balancing of CNN Training on
FPGA Clusters,” in Proc. IEEE Symp. on Field Programmable Custom

Computing Machines, 2018.
[14] T. Wang, T. Geng, X. Jin, and M. Herbordt, “FP-AMR: A Reconfigurable

Fabric Framework for Block-Structured Adaptive Mesh Refinement
Applications,” in Proc. IEEE Symp. on Field Programmable Custom

Computing Machines, 2019.
[15] ——, “Accelerating AP3M-Based Computational Astrophysics Simula-

tions with Reconfigurable Clusters,” in Proc. Int. Conf. on Application

Specific Systems, Architectures, and Processors, 2019.

[16] A. Putnam, “A Reconfigurable Fabric for Accelerating Large-Scale
Datacenter Services,” in Proc. Int. Symp. on Computer Architecture,
2014, pp. 13–24.

[17] J. Sheng, C. Yang, and M. Herbordt, “Towards Low-Latency Commu-
nication on FPGA Clusters with 3D FFT Case Study,” in Proc. Interna-

tional Symposium on Highly Efficient Accelerators and Reconfigurable

Technologies, 2015.
[18] A. George, M. Herbordt, H. Lam, A. Lawande, J. Sheng, and C. Yang,

“Novo-G#: A Community Resource for Exploring Large-Scale Recon-
figurable Computing Through Direct and Programmable Interconnects,”
in IEEE High Perf. Extreme Computing Conf., 2016.

[19] J. Sheng, C. Yang, A. Caulfield, M. Papamichael, and M. Herbordt,
“HPC on FPGA Clouds: 3D FFTs and Implications for Molecular
Dynamics,” in Proc. IEEE Conf. on Field Programmable Logic and

Applications, 2017.
[20] H. De Sterck, U. M. Yang, and J. J. Heys, “Reducing complexity in

parallel algebraic multigrid preconditioners,” SIAM Journal on Matrix

Analysis and Applications, vol. 27, no. 4, pp. 1019–1039, 2006.
[Online]. Available: https://doi.org/10.1137/040615729

[21] “Algebraic multigrid benchmark,” https://github.com/LLNL/AMG.
[22] T. A. Davis and Y. Hu, “The university of florida sparse matrix

collection,” ACM Trans. Math. Softw., vol. 38, no. 1, Dec. 2011.
[Online]. Available: https://sparse.tamu.edu/

[23] “Distributed multigrid linear solver library on gpu,” https://github.com/
NVIDIA/AMGX.

[24] Y. Gu and M. Herbordt, “FPGA-based multigrid computations for
molecular dynamics simulations,” in Proc. IEEE Symp. on Field Pro-

grammable Custom Computing Machines, 2007, pp. 117–126.
[25] T. VanCourt and M. Herbordt, “Application-dependent memory inter-

leaving enables high performance in FPGA-based grid computations,”
in Proc. IEEE Conf. on Field Programmable Logic and Applications,
2006, pp. 395–401.

[26] C. Yang, T. Geng, T. Wang, J. Sheng, C. Lin, V. Sachdeva, W. Sherman,
and M. Herbordt, “Molecular Dynamics Range-Limited Force Evalua-
tion Optimized for FPGA,” in Proc. Int. Conf. on Application Specific

Systems, Architectures, and Processors, 2019.
[27] C. Yang, T. Geng, T. Wang, R. Patel, Q. Xiong, A. Sanaullah, C. Lin,

V. Sachdeva, W. Sherman, and M. Herbordt, “Fully Integrated FPGA
Molecular Dynamics Simulations,” in Proc. ACM/IEEE Int. Conf. for

High Performance Computing, Networking, Storage and Analysis, 2019.
[28] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt, “A

High Memory Bandwidth FPGA Accelerator for Sparse Matrix-Vector
Multiplication, year=2014,” in 2014 IEEE 22nd Annual International

Symposium on Field-Programmable Custom Computing Machines, May,
pp. 36–43.

[29] R. Dorrance, F. Ren, and D. Markoviundefined, “A Scalable Sparse
Matrix-Vector Multiplication Kernel for Energy-Efficient Sparse-Blas
on FPGAs,” in Proceedings International Symposium on Field-

Programmable Gate Arrays, 2014, p. 161–170.
[30] C. Y. Lin, Z. Zhang, N. Wong, and H. K. So, “Design space exploration

for sparse matrix-matrix multiplication on FPGAs,” in 2010 Interna-

tional Conference on Field-Programmable Technology, Dec 2010, pp.
369–372.

